Recent Post
What is Radioactivity?
- Get link
- Other Apps
What is Radioactivity?
Radioactivity is the process of spontaneous disintegration of certain (unstable) atomic nuclei accompanied by the emission. Radiation is emitted by the unstable and exciting nuclei that can normally cause ionization in a matter through which they pass. These radiations can cause extensive. damage to the molecular structure of a substance either as a result of the direct transfer of energy to its atoms or molecules or as a result of the secondary electrons released by ionization. In biological tissue, the effect of ionizing radiation can be very serious. The ionizing radiation can cause harmful somatic and genetic effects on the human body.
Sources of Radiation
Advantage
The Related Quantities
Effects of Ionizing Radiation on Human Body
♦ the energy and the type of radiation
♦ the dose rate
♦ the volume irradiated, and
Somatic Effects
The somatic effects are from damage to the ordinary cells of the body and affect only the radio-exposed individual. The somatic effects depend on whether the irradiation is acute or chronic. These effects also depend on -
♦ the metabolic state and hence the diet
♦ the body color.
The somatic effects are-
♦ inhibition of mitosis
♦ death of a cell.
Genetic Effects
The genetic effects are due to the damage or mutation or alteration in the chromosome structure of sperm or ovum i.e. germ cells may be passed through generation to generation. Ionizing radiation acts directly on genetic materials. The effect is proportional to the dose and the dose rate.
Thus there is no threshold and a radio-exposed individual has a definite probability of producing a mutagenic effect. However, the natural background radiation is responsible for from 4 to 10% of all naturally occurring genetic mutations.
Biological Effects of Ionizing Radiation
In 1904, Madam Curie reported in her Ph. D thesis that a radium source she had placed on her husband’s arm for a few hours had produced a painful some that extended well below the skin and were slow to heal. The biological effects of ionizing radiation are of two general types somatic.
Somatic effects affect an individual directly (loss of hair, reddening of the skin, etc.). Genetic effects consist of mutations in the reproductive cells that affect later generations.
In order to evaluate the genetic effects of X-rays on the population, the concept of genetically significant dose (GSD) is useful. The GSD due to exposure depends on the dose to the individual’s ovaries or tests and the individual’s age. Somatic effects depend on the amount of radiation the part of the body irradiated and the age of the patient.
In general, the younger person, the more hazardous the radiation. In fact, the most dangerous period to receive radiation is before birth. At certain periods in the development of the fetus, radiation can produce deformities.
Immediate, Early or Short Term Effects
These effects are due to an acute radio - exposure and manifest within a few weeks of exposure. These are somatic effects and inevitable. The immediate effects manifest as Chromosome aberration, blood changes nausea, vomiting, and diarrhea loss of appetite, fatigue appellation, skin epilation, sterility, etc., and death.
Delayed Effects
These effects are due to acute or chronic radio exposure and generally manifest after a few years of exposure. These effects are various types of cancer, leukemia, contract, hereditary effects, etc.
Depending on the threshold dose and the probability of effects upon dose, the effects of radiation on the human body are classified into two types: stochastic effects and non-stochastic effects.
Stochastic effects: For the manifestation of certain biological effects no threshold dose can be defined.
These effects may occur at any dose, the probability for manifestation increases with absorbed dose.
Non-stochastic effects. The effects of ionizing radiation on the human body for which a threshold dose of occurrence can be defined are called nonstochastic effects.
Health Effects of Low-Level Radiation Exposure
Since there is no threshold dose for the induction of various types of cancer, leukemia, life-shortening, and hereditary effects, there exists a certain probability for the occurrence of the mentioned effects by low-level radiation exposure. The science of protecting workers and the public from unnecessary radiation is known as radiation protection. It involves the accurate measurement of radiation workers and the public and the design and use of methods to reduce this radiation. The radiation exposure to every individual should be kept as low as reasonably achievable; this can be achieved by -
♦ Working with a source for the minimum time required
♦ Shifting duties.
The patient's movement should be restricted in one place. Using syringe shields during dispensing and administration of radioactive injections can minimize exposures very efficiently.
The basic solution to the radiation protection problem in the medical field can be stated in one word - education. The medical user is often unconcerned by the hazards. X-rays are so common to them that they have a tendency not to worry about them just as we do not worry about having an automobile accident every time we get into a car.
There is probably no absolutely safe amount of radiation. The problem is to balance the benefits against the risks. When we go for a ride in a car or a place we realize in exchange for the benefits of the trip. Similarly, we should balance the ability of an X-ray to detect a medical problem against the slight risk from the radiation in research laboratories and the nuclear power station, so that the workers there receive no, in more than the permitted maximum level of radiation. Radioisotopes are handled by mechanical tongs operated by remote control equipment from behind thick walls made by lead, concrete, or other suitable material, which absorbs dangerous reactions.
The Dose Units Used in Radiotherapy
The amount of radiation dissipated in absorbed by a specific mass of a volume of material is referred to as a dose of radiation. In the very early days of radiation therapy, the unit used to measure the amount of radiation to the patient was the erythema dose the number of X-rays that caused reddening of the skin. From 1950 to 1975 "rad" was the official unit of absorbed dose. The "rad" is defined as 100 ergs/gm. That is a radiation bean that gives 100 ergs of energy to 1gm of tissue. It gives the tissue an absorbed dose of 1 rad. In 1975 the International Commission of Radiological units (ICRU) adopted the “gray” (GY) as the international (SI) unit of dose. 1GY = 1J/kg =100 rads. This unit was named after Harold Gray, the British medical physicist who discovered the oxygen effect.
Dose rate
The amount of radiation absorbed by a body per unit time is called the dose rate. The common unit of dose rate is GY/hour.
- Get link
- Other Apps
Popular Posts
Electromagnetic Induction and Alternating Current
The Importance of Information and Communication Technology
When you open the gas cylinder used for cooking, which action takes place first diffusion or effusion?
Information and Communication Technology
What is Peyote? A Comprehensive Guide
Why is the value of g is different in polar, equinoctial and the tropical regions?
What is an induction stove?
What is photosynthesis?
Comments
Post a Comment